Extracellular matrix fibronectin mediates an endothelial cell response to shear stress via the heparin-binding, matricryptic RWRPK sequence of FNIII1H

Author:

Okech William1,Abberton Keren M.2,Kuebel Julia M.2,Hocking Denise C.12,Sarelius Ingrid H.12

Affiliation:

1. Department of Biomedical Engineering, University of Rochester, Rochester, New York; and

2. Department of Pharmacology and Physiology, University of Rochester, Rochester, New York

Abstract

Endothelial cells (EC) respond to mechanical forces such as shear stress in a variety of ways, one of which is cytoskeletal realignment in the direction of flow. Our earlier studies implicated the extracellular matrix protein fibronectin in mechanosensory signaling to ECs in intact arterioles, via a signaling pathway dependent on the heparin-binding region of the first type III repeat of fibrillar fibronectin (FNIII1H). Here we test the hypothesis that FNIII1H is required for EC stress fiber realignment under flow. Human umbilical vein ECs (HUVECs) exposed to defined flow conditions were used as a well-characterized model of this stress fiber alignment response. Our results directly implicate FNIII1H in realignment of stress fibers in HUVECs and, importantly, show that the matricryptic heparin-binding RWRPK sequence located in FNIII1 is required for the response. Furthermore, we show that flow-mediated stress fiber realignment in ECs adhered via α5β1-integrin-specific ligands does not occur in the absence of FHIII1H, whereas, in contrast, αvβ3-integrin-mediated stress fiber realignment under flow does not require FNIII1H. Our findings thus indicate that there are two separate mechanosignaling pathways mediating the alignment of stress fibers after exposure of ECs to flow, one dependent on αvβ3-integrins and one dependent on FNIII1H. This study strongly supports the conclusion that the RWRPK region of FNIII1H may have broad capability as a mechanosensory signaling site.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3