Automated quantitative assessment of cardiovascular magnetic resonance-derived atrioventricular junction velocities

Author:

Leng Shuang1,Zhao Xiao-Dan1,Huang Fei-Qiong12,Wong Jia-Ing1,Su Bo-Yang1,Allen John Carson2,Kassab Ghassan S.3,Tan Ru-San12,Zhong Liang12

Affiliation:

1. National Heart Centre Singapore, Singapore;

2. Duke-NUS Graduate Medical School Singapore, Singapore; and

3. California Medical Innovations Institute, San Diego, California

Abstract

The assessment of atrioventricular junction (AVJ) deformation plays an important role in evaluating left ventricular systolic and diastolic function in clinical practice. This study aims to demonstrate the effectiveness and consistency of cardiovascular magnetic resonance (CMR) for quantitative assessment of AVJ velocity compared with tissue Doppler echocardiography (TDE). A group of 145 human subjects comprising 21 healthy volunteers, 8 patients with heart failure, 17 patients with hypertrophic cardiomyopathy, 52 patients with myocardial infarction, and 47 patients with repaired Tetralogy of Fallot were prospectively enrolled and underwent TDE and CMR scan. Six AVJ points were tracked with three CMR views. The peak systolic velocity (Sm1), diastolic velocity during early diastolic filling (Em), and late diastolic velocity during atrial contraction (Am) were extracted and analyzed. All CMR-derived septal and lateral AVJ velocities correlated well with TDE measurements (Sm1: r = 0.736; Em: r = 0.835; Am: r = 0.701; Em/Am: r = 0.691; all p < 0.001) and demonstrated excellent reproducibility [intrastudy: r = 0.921–0.991, intraclass correlation coefficient (ICC): 0.918–0.991; interstudy: r = 0.900–0.970, ICC: 0.887–0.957; all p < 0.001]. The evaluation of three-dimensional AVJ motion incorporating measurements from all views better differentiated normal and diseased states [area under the curve (AUC) = 0.918] and provided further insights into mechanical dyssynchrony diagnosis in HF patients (AUC = 0.987). These findings suggest that the CMR-based method is feasible, accurate, and consistent in quantifying the AVJ deformation, and subsequently in diagnosing systolic and diastolic cardiac dysfunction.

Funder

SingHealth Foundation

Goh Cardiovascular Research Grant

MOH | National Medical Research Council (NMRC)

Singapore-China Joint Research Programme

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3