Affiliation:
1. Unit of Cardiac Physiology, University of Manchester, Core Technology Facility;
2. University Hospital of South Manchester National Health Service Foundation Trust, Manchester, United Kingdom; and
3. Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, Mannheim, Germany
Abstract
Transverse (t) tubules are surface membrane invaginations that are present in all mammalian cardiac ventricular cells. The apposition of L-type Ca2+ channels on t tubules with the sarcoplasmic reticulum (SR) constitutes a “calcium release unit” and allows close coupling of excitation to the rise in systolic Ca2+. T tubules are virtually absent in the atria of small mammals, and therefore Ca2+ release from the SR occurs initially at the periphery of the cell and then propagates into the interior. Recent work has, however, shown the occurrence of t tubules in atrial myocytes from sheep. As in the ventricle, Ca2+ release in these cells occurs simultaneously in central and peripheral regions. T tubules in both the atria and the ventricle are lost in disease, contributing to cellular dysfunction. The aim of this study was to determine if the occurrence of t tubules in the atrium is restricted to sheep or is a more general property of larger mammals including humans. In atrial tissue sections from human, horse, cow, and sheep, membranes were labeled using wheat germ agglutinin. As previously shown in sheep, extensive t-tubule networks were present in horse, cow, and human atrial myocytes. Analysis shows half the volume of the cell lies within 0.64 ± 0.03, 0.77 ± 0.03, 0.84 ± 0.03, and 1.56 ± 0.19 μm of t-tubule membrane in horse, cow, sheep, and human atrial myocytes, respectively. The presence of t tubules in the human atria may play an important role in determining the spatio-temporal properties of the systolic Ca2+ transient and how this is perturbed in disease.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献