High oxygen tension constricts epineurial arterioles of the rat sciatic nerve via reactive oxygen species

Author:

Sakai Noriko,Mizuno Risuke,Ono Nobuyuki,Kato Hiroyuki,Ohhashi Toshio

Abstract

Microcirculation of the sheath of the rat sciatic nerve fiber was investigated by using an intravital microscope, and changes in the diameter of the epineurial arterioles in response to highly oxygenated Krebs-bicarbonate solution were evaluated. Superfusion of low-oxygen (0%) Krebs-bicarbonate solution (LKS) onto rat sciatic nerves did not affect changes in the diameter of the arterioles. Nifedipine, a Ca2+-channel blocker, caused a dose-dependent dilation of the epineurial arterioles in LKS. In contrast, superfusion of high-oxygen (21%) Krebs-bicarbonate solution (HKS) onto rat sciatic nerves significantly constricted the epineurial arterioles in a time-dependent manner. The HKS-induced constriction of the epineurial arterioles was significantly reduced by treatment with 120 U/ml superoxide dismutase (SOD) alone or 5,000 U/ml catalase alone. In the presence of 120 U/ml SOD plus 5,000 U/ml catalase, 10−4 M tempol, 10−6 M diphenyleneiodium, 2 × 10−4 M apocynin, or 10−6 M allopurinol, the HKS-induced constriction of the epineurial arterioles completely disappeared. These results suggest that superfusion of highly oxygenated solution onto rat sciatic nerves constricts the epineurial arterioles through reactive oxygen species (ROS), including superoxide and hydrogen peroxide, and that production of superoxide involves a NADPH oxidase- or xanthine oxidase-dependent pathway. In conclusion, ROS play significant roles in the regulation of microcirculation of rat sciatic nerves in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3