Author:
Deng Jen-Ying,Huang Jiung-Pang,Lu Long-Sheng,Hung Li-Man
Abstract
Although insulin resistance is recognized as a potent and prevalent risk factor for coronary heart disease, less is known as to whether insulin resistance causes an altered cardiac phenotype independent of coronary atherosclerosis. In this study, we investigated the relationship between insulin resistance and cardiac contractile dysfunctions by generating a new insulin resistance animal model with rats on high cholesterol-fructose diet. Male Sprague-Dawley rats were given high cholesterol-fructose (HCF) diet for 15 wk; the rats developed insulin resistance syndrome characterized by elevated blood pressure, hyperlipidemia, hyperinsulinemia, impaired glucose tolerance, and insulin resistance. The results show that HCF induced insulin resistance not only in metabolic-response tissues (i.e., liver and muscle) but also in the heart as well. Insulin-stimulated cardiac glucose uptake was significantly reduced after 15 wk of HCF feeding, and cardiac insulin resistance was associated with blunted Akt-mediated insulin signaling along with glucose transporter GLUT4 translocation. Basal fatty acid transporter FATP1 levels were increased in HCF rat hearts. The cardiac performance of the HCF rats exhibited a marked reduction in cardiac output, ejection fraction, stroke volume, and end-diastolic volume. It also showed decreases in left ventricular end-systolic elasticity, whereas the effective arterial elasticity was increased. In addition, the relaxation time constant of left ventricular pressure was prolonged in the HCF group. Overall, these results indicate that insulin resistance reduction of cardiac glucose uptake is associated with defects in insulin signaling. The cardiac metabolic alterations that impair contractile functions may lead to the development of cardiomyopathy.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology