Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle

Author:

Sinkler Shenghua Y.1,Segal Steven S.12

Affiliation:

1. Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and

2. Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri

Abstract

Aging occurs with enhanced sympathetic nerve activity and endothelial dysfunction; however, little is known of how successive branches of microvascular resistance networks are affected in vivo. We questioned whether vascular reactivity is altered differentially along resistance networks with advanced age. The left gluteus maximus muscle of anesthetized 4-mo-old and 24-mo-old male C57BL/6 mice (Young and Old, respectively) was exposed for intravital microscopy and superfused with physiological salt solution (3 ml/min; pH 7.4, 34°C). Spontaneous vasomotor tone increased progressively from proximal feed arteries (FA) and first-order (1A) arterioles through distal second-order (2A) and third-order (3A) arterioles and was ∼15% greater in 2A and 3A of Old versus Young. Vasoconstriction during elevated superfusion Po2 increased with branch order and to a greater extent in Young. Peak constrictions to phenylephrine [α1 adrenoreceptor (α1AR) agonist] were similar for FA and 1A of both ages and ∼20% greater for 2A and 3A of Young. Across arterioles (but not FA), constrictions to UK 14304 (α2AR agonist) were depressed ∼30% in Old versus Young. Thus advanced age attenuated vasoconstriction to O2 throughout networks while blunting vasoconstriction to α1AR and α2AR activation in arterioles. With ACh, endothelium-dependent dilation (EDD) was ∼20% greater in FA of Young yet was approximately twofold greater for 2A and 3A of Old. Sodium nitroprusside evoked maximal dilations similar to ACh. Thus, with advanced age, EDD was attenuated in FA while robust in distal arterioles having enhanced vasomotor tone. We conclude that advanced age differentially alters reactivity among branches of microvascular resistance networks.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3