Affiliation:
1. Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
2. Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
Abstract
Aging occurs with enhanced sympathetic nerve activity and endothelial dysfunction; however, little is known of how successive branches of microvascular resistance networks are affected in vivo. We questioned whether vascular reactivity is altered differentially along resistance networks with advanced age. The left gluteus maximus muscle of anesthetized 4-mo-old and 24-mo-old male C57BL/6 mice (Young and Old, respectively) was exposed for intravital microscopy and superfused with physiological salt solution (3 ml/min; pH 7.4, 34°C). Spontaneous vasomotor tone increased progressively from proximal feed arteries (FA) and first-order (1A) arterioles through distal second-order (2A) and third-order (3A) arterioles and was ∼15% greater in 2A and 3A of Old versus Young. Vasoconstriction during elevated superfusion Po2 increased with branch order and to a greater extent in Young. Peak constrictions to phenylephrine [α1 adrenoreceptor (α1AR) agonist] were similar for FA and 1A of both ages and ∼20% greater for 2A and 3A of Young. Across arterioles (but not FA), constrictions to UK 14304 (α2AR agonist) were depressed ∼30% in Old versus Young. Thus advanced age attenuated vasoconstriction to O2 throughout networks while blunting vasoconstriction to α1AR and α2AR activation in arterioles. With ACh, endothelium-dependent dilation (EDD) was ∼20% greater in FA of Young yet was approximately twofold greater for 2A and 3A of Old. Sodium nitroprusside evoked maximal dilations similar to ACh. Thus, with advanced age, EDD was attenuated in FA while robust in distal arterioles having enhanced vasomotor tone. We conclude that advanced age differentially alters reactivity among branches of microvascular resistance networks.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献