Cardiovascular responses to microinjections of urocortin 3 into the nucleus tractus solitarius of the rat

Author:

Nakamura Takeshi,Kawabe Kazumi,Sapru Hreday N.

Abstract

Urocortin 3 (Ucn3) is a new member of the corticotropin-releasing factor (CRF) peptide family and is considered to be a specific and endogenous ligand for CRF type 2 receptors (CRF2Rs). The presence of CRF2Rs has been reported in the nucleus tractus solitarius (NTS) of the rat. It was hypothesized that the activation of CRF2Rs in the medial NTS (mNTS) may play a role in cardiovascular regulation. This hypothesis was tested in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of Ucn3 (0.03, 0.06, 0.12, and 0.25 mM) into the mNTS of anesthetized rats elicited decreases in mean arterial pressure (MAP: 5.0 ± 1.0, 21.6 ± 2.6, 20.0 ± 2.8, and 12.7 ± 3.4 mmHg, respectively) and heart rate (HR: 7.8 ± 2.6, 46.2 ± 9.3, 34.5 ± 8.4, and 16.6 ± 4.9 beats/min, respectively). Microinjections of artificial cerebrospinal fluid (100 nl) into the mNTS did not elicit cardiovascular responses. Maximum decreases in MAP and HR were elicited by 0.06 mM concentration of Ucn3. Cardiovascular responses to Ucn3 were similar in unanesthetized midcollicular decerebrate rats. A bilateral vagotomy completely abolished Ucn3-induced bradycardia. The decreases in MAP and HR elicited by Ucn3 (0.06 mM) were completely blocked by astressin (1 mM; nonselective CRFR antagonist) and K41498 (5 mM; selective CRF2R antagonist). Microinjections of Ucn3 (0.06 mM) into the mNTS decreased the efferent greater splanchnic nerve activity. After the blockade of CRF2Rs in the mNTS, a Ucn3-induced decrease in the efferent sympathetic nerve discharge was abolished. These results indicate that Ucn3 microinjections into the mNTS exerted excitatory effects on the mNTS neurons via CRF2Rs, leading to depressor and bradycardic responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3