Central command blunts the baroreflex bradycardia to aortic nerve stimulation at the onset of voluntary static exercise in cats

Author:

Komine Hidehiko1,Matsukawa Kanji1,Tsuchimochi Hirotsugu1,Murata Jun1

Affiliation:

1. Department of Physiology, Institute of Health Sciences, Hiroshima University Faculty of Medicine, Hiroshima 734-8551, Japan

Abstract

To examine whether the central characteristics of the aortic baroreflex alter from moment to moment during static exercise, we identified the dynamic changes in the sizes of the bradycardia and depressor response evoked by stimulation of the aortic depressor nerve (ADN). Three conscious cats were trained to voluntarily extend the right forelimb and press a bar for 31 ± 1 s with a peak force of 337 ± 22 g while maintaining a sitting posture. The ADN stimulation-induced bradycardia was attenuated at the initial period of exercise (up to 8 s from the exercise onset) to 62 ± 5% of the preexercise bradycardia and remained blunted until the end of exercise. The most blunted bradycardia was observed immediately before or when the forelimb was extended before force development. The baroreflex-induced bradycardia was suppressed again at cessation of exercise when the forelimb was retracted and recovered within a few seconds. In contrast, static exercise did not affect the ADN stimulation-induced depressor response. The ADN stimulation-induced bradycardia was also blunted at the beginning of naturally occurring body movement such as spontaneous postural change or grooming behavior. Thus it is likely that the central characteristics of the aortic baroreflex dynamically change from moment to moment during voluntary static exercise and during natural body movement and that particularly a central inhibition of the cardiac component of the aortic baroreflex is induced by central command at the onset of static exercise, whereas the central property of the vasomotor component of the baroreflex is preserved.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3