Control of blood vessel structure: insights from theoretical models

Author:

Pries A. R.,Secomb T. W.

Abstract

Blood vessels are capable of continuous structural adaptation in response to changing local conditions and functional requirements. Theoretical modeling approaches have stimulated the development of new concepts in this area and have allowed investigation of the complex relations between adaptive responses to multiple stimuli and resulting functional properties of vascular networks. Early analyses based on a minimum-work principle predicted uniform wall shear stress in all segments of vascular networks and led to the concept that vessel diameter is controlled by a feedback system based on responses to wall shear stress. Vascular reactions to changes in transmural pressure suggested feedback control of circumferential wall stress. However, theoretical simulations of network adaptation showed that these two mechanisms cannot, by themselves, lead to stable and realistic network structures. Models combining reactions to fluid shear stress, circumferential stress, and metabolic status of tissue, with propagation of stimuli upstream and downstream along vascular segments, are needed to explain stable and functionally adequate adaptation of vascular structure. Such models provide a basis for predicting the response of vascular segments exposed to altered conditions, as, for example, in vascular grafts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3