Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study

Author:

Claessen Guido1,Claus Piet2,Delcroix Marion3,Bogaert Jan4,Gerche Andre La15,Heidbuchel Hein1

Affiliation:

1. Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium;

2. Department of Cardiovascular Imaging and Dynamics, University of Leuven, Leuven, Belgium;

3. Department of Pneumology, University Hospitals Leuven, Leuven, Belgium;

4. Department of Radiology, University Hospitals Leuven, Leuven, Belgium; and

5. St Vincent's Hospital Department of Medicine, University of Melbourne, Fitzroy, South Australia, Australia

Abstract

Breathing-induced changes in intrathoracic pressures influence left ventricular (LV) and right ventricular (RV) volumes, the exact nature and extent of which have not previously been evaluated in humans. We sought to examine this “respiratory pump” using novel real-time cardiac magnetic resonance (CMR) imaging. Eight healthy subjects underwent serial multislice real-time CMR during normal breathing, breath holding, and the Valsalva maneuver. Subsequently, a separate cohort of nine subjects underwent real-time CMR at rest and during incremental exercise. LV and RV end-diastolic volume (EDV) and end-systolic volume (ESV) and diastolic and systolic eccentricity indexes were determined at peak inspiration and expiration. During normal breathing, inspiration resulted in an increase in RV volumes [RVEDV: +18 ± 8%, RVESV: +14 ± 12%, and RV stroke volume (SV): +21 ± 10%, P < 0.01] and an opposing decrease in LV volumes ( P < 0.0001 for interaction). During end-inspiratory breath holding, RV SV decreased by 9 ± 10% ( P = 0.046), whereas LV SV did not change. During the Valsalva maneuver, volumes decreased in both ventricles (RVEDV: −29 ± 11%, RVESV: −16 ± 14%, RV SV: −36 ± 14%, LVEDV: −22 ± 17%, and LV SV: −25 ± 17%, P < 0.01). The reciprocal effect of respiration on LV and RV volumes was maintained throughout exercise. The diastolic and systolic eccentricity indexes were greater during inspiration than during expiration, both at rest and during exercise ( P < 0.0001 for both). In conclusion, ventricular volumes oscillate with respiratory phase such that RV and LV volumes are maximal at peak inspiration and expiration, respectively. Thus, interpretation of RV versus LV volumes requires careful definition of the exact respiratory time point for proper interpretation, both at rest and during exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3