20-HETE increases survival and decreases apoptosis in pulmonary arteries and pulmonary artery endothelial cells

Author:

Dhanasekaran Anuradha,Bodiga Sreedhar,Gruenloh Stephanie,Gao Ying,Dunn Laurel,Falck John R.,Buonaccorsi J. Noelle,Medhora Meetha,Jacobs Elizabeth R.

Abstract

20-Hydroxyeicosatetraenoic acid (20-HETE) is an endogenous cytochrome P-450 product present in vascular smooth muscle and uniquely located in the vascular endothelium of pulmonary arteries (PAs). 20-HETE enhances reactive oxygen species (ROS) production of bovine PA endothelial cells (BPAECs) in an NADPH oxidase-dependent manner and is postulated to promote angiogenesis via activation of this pathway in systemic vascular beds. We tested the capacity of 20-HETE or a stable analog of this compound, 20-hydroxy-eicosa-5( Z),14( Z)-dienoic acid, to enhance survival and protect against apoptosis in BPAECs stressed with serum starvation. 20-HETE produced a concentration-dependent increase in numbers of starved BPAECs and increased 5-bromo-2′-deoxyuridine incorporation. Caspase-3 activity, nuclear fragmentation studies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays supported protection from apoptosis and enhanced survival of starved BPAECs treated with a single application of 20-HETE. Protection from apoptosis depended on intact NADPH oxidase, phosphatidylinositol 3 (PI3)-kinase, and ROS production. 20-HETE-stimulated ROS generation by BPAECs was blocked by inhibition of PI3-kinase or Akt activity. These data suggest 20-HETE-associated protection from apoptosis in BPAECs required activation of PI3-kinase and Akt and generation of ROS. 20-HETE also protected against apoptosis in BPAECs stressed by lipopolysaccharide, and in mouse PAs exposed to hypoxia reoxygenation ex vivo. In summary, 20-HETE may afford a survival advantage to BPAECs through activation of prosurvival PI3-kinase and Akt pathways, NADPH oxidase activation, and NADPH oxidase-derived superoxide.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3