Author:
Koch Matthias,Wendorf Michael,Dendorfer Andreas,Wolfrum Sebastian,Schulze Karsten,Spillmann Frank,Schultheiss Heinz-Peter,Tschöpe Carsten
Abstract
Diabetes mellitus impairs the cardiac kallikrein-kinin system by reducing cardiac kallikrein (KLK) and kininogen levels, a mechanism that may contribute to the deleterious outcome of cardiac ischemia in this disease. We studied left ventricular (LV) function and bradykinin (BK) coronary outflow in buffer-perfused, isolated working hearts ( n = 7) of controls and streptozotocin (STZ)-induced diabetic rats before and after global ischemia. With the use of selective kininase inhibitors, the activities of angiotensin I-converting enzyme, aminopeptidase P, and neutral endopeptidase were determined by analyzing the degradation kinetics of exogenously administered BK during sequential coronary passages. Basal LV function and coronary flow were impaired in STZ-induced diabetic rats. Neither basal nor postischemic coronary BK outflow differed between control and diabetic hearts. Reperfusion after 15 min of ischemia induced a peak in coronary BK outflow that was of the same extent and duration in both groups. In diabetic hearts, total cardiac kininase activity was reduced by 41.4% with an unchanged relative kininase contribution compared with controls. In conclusion, despite reduced cardiac KLK synthesis, STZ-induced diabetic hearts are able to maintain kinin liberation under basal and ischemic conditions because of a primary impairment or a secondary downregulation of kinin-degrading enzymes.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献