Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation

Author:

Mynard Jonathan P.12,Penny Daniel J.123,Smolich Joseph J.12

Affiliation:

1. Heart Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia;

2. Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; and

3. Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia

Abstract

Multiscale modeling is a promising tool for the study of coronary hemodynamics. A key strength of this approach is that it accounts for microvascular properties and extravascular forces that differ regionally and transmurally, as well as wave propagation effects in the conduit arteries. However, little validation of such models has been reported and no models of the newborn coronary circulation have been described. We therefore validated a multiscale model of the left coronary circulation using high-fidelity data from nine adult sheep and nine newborn lambs and investigated whether wave propagation effects are more prominent in adults, whose body size (and hence wave transit distance) is greater. The model consisted of a one-dimensional (1D) network of the major conduit arteries and a lumped parameter model of microvascular beds. Intramyocardial pressure was considered to arise via contraction-related myocyte thickening and transmission of ventricular cavity pressure into the heart wall. 1D network geometry from published human anatomical data was scaled using myocardial weights, while subject-specific aortic pressure/flow and ventricular pressure formed model inputs. Total vascular resistance was determined iteratively from measured mean circumflex coronary flow (CxQ), but no fitting of phasic aspects of the waveform was performed. Excellent agreement was obtained between simulated and measured CxQ waveforms in most cases. Detailed flow waveform analysis did not clearly reveal a greater prominence of wave propagation effects in adults compared with newborns. This multiscale model is likely to be useful for investigating wave phenomena and phasic aspects of coronary flow in adults and during development.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3