Endothelial cAMP deactivates ischemia-reperfusion-induced microvascular hyperpermeability via Rap1-mediated mechanisms

Author:

Korayem Adam H.12,Mujica Patricio E.2,Aramoto Haruo1,Durán Ricardo G.1,Nepali Prerna R.2,Kim David D.1,Harris Andrew L.12,Sánchez Fabiola A.3,Durán Walter N.12

Affiliation:

1. Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Newark, New Jersey;

2. Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey; and

3. Instituto de Inmunología, Escuela de Medicina, Universidad Austral de Chile, Valdivia, Chile

Abstract

Approaches to reduce excessive edema due to the microvascular hyperpermeability that occurs during ischemia-reperfusion (I/R) are needed to prevent muscle compartment syndrome. We tested the hypothesis that cAMP-activated mechanisms actively restore barrier integrity in postischemic striated muscle. We found, using I/R in intact muscles and hypoxia-reoxygenation (H/R, an I/R mimic) in human microvascular endothelial cells (HMVECs), that hyperpermeability can be deactivated by increasing cAMP levels through application of forskolin. This effect was seen whether or not the hyperpermeability was accompanied by increased mRNA expression of VEGF, which occurred only after 4 h of ischemia. We found that cAMP increases in HMVECs after H/R, suggesting that cAMP-mediated restoration of barrier function is a physiological mechanism. We explored the mechanisms underlying this effect of cAMP. We found that exchange protein activated by cAMP 1 (Epac1), a downstream effector of cAMP that stimulates Rap1 to enhance cell adhesion, was activated only at or after reoxygenation. Thus, when Rap1 was depleted by small interfering RNA, H/R-induced hyperpermeability persisted even when forskolin was applied. We demonstrate that 1) VEGF mRNA expression is not involved in hyperpermeability after brief ischemia, 2) elevation of cAMP concentration at reperfusion deactivates hyperpermeability, and 3) cAMP activates the Epac1-Rap1 pathway to restore normal microvascular permeability. Our data support the novel concepts that 1) different hyperpermeability mechanisms operate after brief and prolonged ischemia and 2) cAMP concentration elevation during reperfusion contributes to deactivation of I/R-induced hyperpermeability through the Epac-Rap1 pathway. Endothelial cAMP management at reperfusion may be therapeutic in I/R injury. NEW & NOTEWORTHY Here, we demonstrate that 1) stimulation of cAMP production deactivates ischemia-reperfusion-induced hyperpermeability in muscle and endothelial cells; 2) VEGF mRNA expression is not enhanced by brief ischemia, suggesting that VEGF mechanisms do not activate immediate postischemic hyperpermeability; and 3) deactivation mechanisms operate via cAMP-exchange protein activated by cAMP 1-Rap1 to restore integrity of the endothelial barrier.

Funder

NIH NHLBI

Fondecyt-Chile

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3