Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis

Author:

Castillero Estibaliz1ORCID,Akashi Hirokazu1,Najjar Marc1,Ji Ruiping2,Brandstetter Lea Maria1,Wang Catherine1,Liao Xianghai2,Zhang Xiaokan2,Sperry Alexandra1,Gailes Marcia1,Guaman Karina1,Recht Adam1,Schlosberg Ira1,Sweeney H. Lee3,Ali Ziad A.2,Homma Shunichi2,Colombo Paolo C.2,Ferrari Giovanni4,Schulze P. Christian2,George Isaac1

Affiliation:

1. Division of Cardiothoracic Surgery, Department of Surgery, College of Physicians and Surgeons of Columbia University, New York, New York

2. Division of Cardiology, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York

3. Department of Pharmacology, University of Florida, Gainesville, Florida

4. Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons of Columbia University, New York, New York

Abstract

Myostatin (MSTN) is a transforming growth factor (TGF)-β superfamily member that acts as a negative regulator of muscle growth and may play a role in cardiac remodeling. We hypothesized that inhibition of activin type II receptors (ACTRII) to reduce MSTN signaling would reduce pathological cardiac remodeling in experimental heart failure (HF). C57BL/6J mice underwent left anterior descending coronary artery ligation under anesthesia to induce myocardial infarction (MI) or no ligation (sham). MI and sham animals were each randomly divided into groups ( n ≥ 10 mice/group) receiving an ACTRII or ACTRII/TGFβ receptor-signaling inhibiting strategy: 1) myo-Fc group (weekly 10 mg/kg Myo-Fc) or 2) Fol + TGFi group (daily 12 µg/kg follistatin plus 2 mg/kg TGFβ receptor inhibitor), versus controls. ACTRII/TGFBR signaling inhibition preserved cardiac function by echocardiography and prevented an increase in brain natriuretic peptide (BNP). ACTRII/TGFBR inhibition resulted in increased phosphorylation (P) of Akt and decreased P-p38 mitogen-activated protein kinase (MAPK) in MI mice. In vitro, Akt contributed to P-SMAD2,3, P-p38, and BNP regulation in cardiomyocytes. ACTRII/TGFBR inhibition increased sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) levels and decreased unfolded protein response (UPR) markers in MI mice. ACTRII/TGFBR inhibition was associated with a decrease in cardiac fibrosis and fibrosis markers, connective tissue growth factor (CTGF), type I collagen, fibronectin, α-smooth muscle actin, and matrix metalloproteinase (MMP)-12 in MI mice. MSTN exerted a direct regulation on the UPR marker eukaryotic translation initiation factor-2α (eIf2α) in cardiomyocytes. Our study suggests that ACTRII ligand inhibition has beneficial effects on cardiac signaling and fibrosis after ischemic HF. NEW & NOTEWORTHY Activin type II receptor ligand inhibition resulted in preserved cardiac function, a decrease in cardiac fibrosis, improved SERCA2a levels, and a prevention of the unfolded protein response in mice with myocardial infarction.

Funder

Irving Institute/Clinical Trials Office

HHS | NIH | National Heart, Lung, and Blood Institute

American Association for Thoracic Surgery

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3