Author:
Cabrales Pedro,Tsai Amy G.,Intaglietta Marcos
Abstract
Extreme hemodilution was performed in the hamster chamber window model using 6% Dextran 70, lowering systemic hematocrit by 60%. Animals were subsequently divided into three groups and hemodiluted to a hematocrit of 11% using 6% Dextran 70, 6% Dextran 500, and a 4% Dextran 70 + 0.7% alginate solution ( n = 6 each group). Final plasma viscosities were 1.4 ± 0.2, 2.2 ± 0.1, and 2.7 ± 0.2 cp, respectively, ( P < 0.05, high viscosity vs. low viscosity). Blood viscosities were 2.1 ± 0.2, 2.9 ± 0.4, and 3.9 ± 0.3 cp, respectively. The lowest blood and plasma viscosity group had a significantly lower functional capillary density, 37 ± 16%, whereas the two high-viscosity solutions were 71 ± 15% and 76 ± 12% ( P < 0.05, high viscosity vs. low viscosity), respectively. Arteriolar and venular flow in the Dextran 500 and alginate groups was higher than baseline (i.e., normal nontreated animals), whereas the low-viscosity group showed a reduction in flow. These microvascular changes were paralleled by changes in base excess, which was negative for the Dextran 70 group and positive for the other groups. However, tissue Po2 was uniformly low for all groups (average of 1.4 mmHg). Calculation of tissue oxygen consumption in the window chamber based on the microvascular data, flow, and intravascular Po2 showed that only the alginate + Dextran 70 solution-exchanged animals returned to baseline oxygen consumption, whereas the other groups were lower than baseline ( P < 0.05). These results show that hemodilution performed with high-viscosity plasma expanders yields systemic arterial pressures and functional capillary densities that are significantly higher ( P < 0.05) than those obtained with 6% Dextran 70, a fluid whose viscosity is similar to that of plasma. A condition for obtaining these results is that the oncotic pressure of the plasma expander be titrated to near normal, so that autotransfusion of fluid from the tissue into the vascular compartment does not reduce the effects of increasing plasma viscosity and increased shear stress on the microvascular wall.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献