Calcitonin gene-related peptide facilitates revascularization during hindlimb ischemia in mice

Author:

Mishima Toshiaki12,Ito Yoshiya1,Hosono Kanako2,Tamura Yukio1,Uchida Yasushi1,Hirata Mitsuhiro1,Suzsuki Tatsunori2,Amano Hideki3,Kato Shintaro4,Kurihara Yukiko5,Kurihara Hiroki5,Hayashi Izumi6,Watanabe Masahiko1,Majima Masataka2

Affiliation:

1. Departments of 1Surgery,

2. Pharmacology,

3. Thoracic Surgery, and

4. Cardio-angiology, Kitasato University School of Medicine, Kanagawa;

5. Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, Tokyo University, Tokyo; and

6. Faculty of Pharmaceutical Sciences, Department of Pathophysiology, Nippon Pharmaceutical University, Saitama, Japan

Abstract

It is known that the neural system plays a fundamental role in neovascularization. A neuropeptide, calcitonin gene-related peptide (CGRP), is widely distributed in the central and peripheral neuronal systems. However, it remains to be elucidated the role of CGRP in angiogenesis during ischemia. The present study examined whether endogenous CGRP released from neuronal systems facilitates revascularization in response to ischemia using CGRP knockout mice (CGRP−/−). CGRP−/− or their wild-type littermates (CGRP+/+) were subjected to unilateral hindlimb ischemia. CGRP−/− exhibited impaired blood flow recovery from ischemia and decreased capillary density expressed in terms of the number of CD-31-positive cells in the ischemic tissues compared with CGRP+/+. In vivo microscopic studies showed that the functional capillary density in CGRP−/− was reduced. Hindlimb ischemia increased the expression of pro-CGRP mRNA and of CGRP protein in the lumbar dorsal root ganglia. Lack of CGRP decreased mRNA expression of growth factors, including CD31, vascular endothelial growth factor-A, basic fibroblast growth factor, and transforming growth factor-β, in the ischemic limb tissue. The application of CGRP enhanced the mRNA expression of CD31 and VEGF-A in human umbilical vein endothelial cells (HUVECs) and fibroblasts. Subcutaneous infusion of CGRP8–37, a CGRP antagonist, using miniosmotic pumps delayed angiogenesis and reduced the expression of proangiogenic growth factors during hindlimb ischemia. These results indicate that endogenous CGRP facilitates angiogenesis in response to ischemia. Targeting CGRP may provide a promising approach for controlling angiogenesis related to pathophysiological conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3