Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium

Author:

Decker Keith F.,Heijman Jordi,Silva Jonathan R.,Hund Thomas J.,Rudy Yoram

Abstract

Computational models of cardiac myocytes are important tools for understanding ionic mechanisms of arrhythmia. This work presents a new model of the canine epicardial myocyte that reproduces a wide range of experimentally observed rate-dependent behaviors in cardiac cell and tissue, including action potential (AP) duration (APD) adaptation, restitution, and accommodation. Model behavior depends on updated formulations for the 4-aminopyridine-sensitive transient outward current ( Ito1), the slow component of the delayed rectifier K+ current ( IKs), the L-type Ca2+ channel current ( ICa,L), and the Na+-K+ pump current ( INaK) fit to data from canine ventricular myocytes. We found that Ito1 plays a limited role in potentiating peak ICa,L and sarcoplasmic reticulum Ca2+ release for propagated APs but modulates the time course of APD restitution. IKs plays an important role in APD shortening at short diastolic intervals, despite a limited role in AP repolarization at longer cycle lengths. In addition, we found that ICa,L plays a critical role in APD accommodation and rate dependence of APD restitution. Ca2+ entry via ICa,L at fast rate drives increased Na+-Ca2+ exchanger Ca2+ extrusion and Na+ entry, which in turn increases Na+ extrusion via outward INaK. APD accommodation results from this increased outward INaK. Our simulation results provide valuable insight into the mechanistic basis of rate-dependent phenomena important for determining the heart's response to rapid and irregular pacing rates (e.g., arrhythmia). Accurate simulation of rate-dependent phenomena and increased understanding of their mechanistic basis will lead to more realistic multicellular simulations of arrhythmia and identification of molecular therapeutic targets.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3