Affiliation:
1. Department of Cell and Molecular Pharmacology and
2. Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
Abstract
Adenylyl cyclases present a potential focal point for signal integration in vascular smooth muscle cells (VSMC) influencing contractile state and cellular responses to vessel wall injury. In the present study, we examined the influence of the vasoactive peptide arginine vasopressin (AVP) on cAMP regulation in primary cultures of rat aortic VSMC and in the A7r5 arterial smooth muscle cell line. In cultured VSMC and A7r5 cells, AVP had no effect on basal cAMP but differentially affected β-adrenergic receptor-induced activation of adenylyl cyclase. AVP synergistically increased (twofold) isoproterenol-stimulated cAMP production in VSMC but inhibited the effect of isoproterenol (50%) in the A7r5 cell line. The effects of AVP in both preparations were blocked when cells were pretreated with a selective V1vasopressin receptor antagonist. Moreover, the actions of AVP in both models were dependent on release of intracellular Ca2+ and were mimicked by elevation of Ca2+ with the ionophore A23187 , suggesting that the responses to AVP involve Ca2+-mediated regulation of adenylyl cyclase stimulation. Adenylyl cyclase types I, III, and VIII are stimulated by Ca2+/calmodulin, whereas types V and VI are directly inhibited by Ca2+. RNA blot analysis for effector isotypes indicated that both VSMC and A7r5 cells expressed types III, V, and VI. VSMC also expressed mRNA for type IV and VIII effectors, which could account for the cell-specific responses to peptide hormone and Ca2+.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献