Calmodulin levels are dynamically regulated in living vascular smooth muscle cells

Author:

Hulvershorn Justin12,Gallant Cynthia1,Wang C.-L. Albert23,Dessy Chantal1,Morgan Kathleen G.124

Affiliation:

1. Signal Transduction Group, and

2. Muscle Research Group, Boston Biomedical Research Institute, Watertown 02472;

3. Department of Physiology, Tufts University School of Medicine, Boston 02111; and

4. Cardiovascular Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215

Abstract

The total unbound calmodulin (i.e., not bound to target proteins) level in living smooth muscle cells from the ferret portal vein was monitored with a low-affinity, calmodulin-binding peptide tagged with an environmentally sensitive fluorophore. GS17C, a previously characterized peptide, from the calmodulin-binding domain of caldesmon was tagged with iodoacetyl nitrobenz-2-oxa-1,3-diazole (NBD) or, as a negative control, with iodoacetylfluorescein isothiocyanate. Increases in NBD-GS17C fluorescence were detected by using confocal microscopy when chemically loaded cells were stimulated with solutions of elevated [K+] or the calcium ionophore 4-bromoA-23187 to elicit increases in intracellular Ca2+ concentration ([Ca2+]i) quantified by fura 2. Increases in peptide fluorescence were detected in response to a phorbol ester in the absence of changes in [Ca2+]i. These changes were blocked by the addition of the calmodulin antagonist calmidazolium. These results suggest that the total unbound intracellular calmodulin levels may be sufficient to regulate the activity of caldesmon and, furthermore, that phosphorylation of protein kinase C substrates may increase the level of available calmodulin in living smooth muscle cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3