Purkinje and ventricular contributions to endocardial activation sequence in perfused rabbit right ventricle

Author:

Cates Adam W.12,Smith William M.1,Ideker Raymond E.13,Pollard Andrew E.1

Affiliation:

1. Cardiac Rhythm Management Laboratory, Department of Biomedical Engineering and

2. Guidant Corporation, St. Paul, Minnesota 55112-5798

3. Departments of Medicine and Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35294; and

Abstract

Interactions between peripheral conduction system and myocardial wave fronts control the ventricular endocardial activation sequence. To assess those interactions during sinus and paced ventricular beats, we recorded unipolar electrograms from 528 electrodes spaced 0.5 mm apart and placed over most of the perfused rabbit right ventricular free wall endocardium. Left ventricular contributions to electrograms were eliminated by cryoablating that tissue. Electrograms were systematically processed to identify fast (P) deflections separated by >2 ms from slow (V) deflections to measure P-V latencies. By using this criterion during sinus mapping ( n = 5), we found P deflections in 22% of electrograms. They preceded V deflections at 91% of sites. Peripheral conduction system wave fronts preceded myocardial wave fronts by an overall P-V latency magnitude that measured 6.7 ± 3.9 ms. During endocardial pacing ( n = 8) at 500 ms cycle length, P deflections were identified on 15% of electrodes and preceded V deflections at only 38% of sites, and wave fronts were separated by a P-V latency magnitude of 5.6 ± 2.3 ms. The findings were independent of apical, basal, or septal drive site. Modest changes in P-V latency accompanied cycle length accommodation to 125-ms pacing (6.8 ± 2.6 ms), although more pronounced separation between wave fronts followed premature stimulation (11.7 ± 10.4 ms). These results suggested peripheral conduction system and myocardial wave fronts became functionally more dissociated after premature stimulation. Furthermore, our analysis of the first ectopic beats that followed 12 of 24 premature stimuli revealed comparable separation between wave fronts (10.7 ± 5.5 ms), suggesting the dissociation observed during the premature cycles persisted during the initiating cycles of the resulting arrhythmias.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3