Ischemic-reperfused isolated working mouse hearts: membrane damage and type IIA phospholipase A2

Author:

De Windt Leon J.1,Willems Jodil1,Roemen Theo H. M.1,Coumans Will A.1,Reneman Robert S.1,Van Der Vusse Ger J.1,Van Bilsen Marc1

Affiliation:

1. Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands

Abstract

For the murine heart the relationships between ischemia-reperfusion-induced loss of cardiac function, enzyme release, high-energy phosphate (HEP), and membrane phospholipid metabolism are ill-defined. Accordingly, isolated ejecting murine hearts were subjected to varying periods of ischemia, whether or not followed by reperfusion. On reperfusion, hemodynamic function was almost completely restored after 10 min of ischemia [83 ± 14% recovery of cardiac output (CO)], but was severely depressed after 15 and 20 min of ischemia (40 ± 24 and 31 ± 24% recovery of CO, respectively). Reperfusion was associated with partial recovery of HEP stores and enhanced degradation of phospholipids as indicated by the accumulation of fatty acids (FA). Myocardial FA content and enzyme release during reperfusion were correlated ( r = 0.70), suggesting that membrane phospholipid degradation and cellular damage are closely related phenomena. To investigate the role of type IIA secretory phospholipase A2 (sPLA2) in this process, hearts from wild-type and sPLA2-deficient mice were subjected to ischemia-reperfusion. Postischemic functional recovery, ATP depletion, enzyme release, and FA accumulation were not significantly different between wild-type and sPLA2- deficient hearts. These findings argue against a prominent role of type IIA sPLA2 in the development of irreversible cell damage in the ischemic-reperfused murine myocardium.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3