Affiliation:
1. Department of Physiology and Biophysics,
2. Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202; and
3. Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio 45267
Abstract
Recent investigations have established a role for the βII-isoform of protein kinase C (PKCβII) in the induction of cardiac hypertrophy and failure. Although receptors for activated C kinase (RACKs) have been shown to direct PKC signal transduction, the mechanism through which RACK1, a selective PKCβII RACK, participates in PKCβII-mediated cardiac hypertrophy and failure remains undefined. We have previously reported that PKCε activation modulates the expression of RACKs, and that altered ε-isoform of PKC (PKCε)-RACK interactions may facilitate the genesis of cardiac phenotypes in mice. Here, we present evidence that high levels of PKCε activity are commensurate with impaired left ventricular function (dP/d t = 6,074 ± 248 mmHg/s in control vs. 3,784 ± 269 mmHg/s in transgenic) and significant myocardial hypertrophy. More importantly, we demonstrate that high levels of PKCε activation induce a significant colocalization of PKCβII with RACK1 (154 ± 7% of control) and a marked redistribution of PKCβII to the particulate fraction (17 ± 2% of total PKCβII in control mice vs. 49 ± 5% of total PKCβII in hypertrophied mice), without compensatory changes of the other eight PKC isoforms present in the mouse heart. This enhanced PKCβII activation is coupled with increased RACK1 expression and PKCβII-RACK1 interactions, demonstrating PKCε-induced PKCβII signaling via a RACK1-dependent mechanism. Taken together with our previous findings regarding enhanced RACK1 expression and PKCε-RACK1 interactions in the setting of cardiac hypertrophy and failure, these results suggest that RACK1 serves as a nexus for at least two isoforms of PKC, the ε-isoform and the βII-isoform, thus coordinating PKC-mediated hypertrophic signaling.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献