Role of EP2 and EP3 PGE2receptors in control of murine renal hemodynamics

Author:

Audoly Laurent P.1,Ruan Xiaoping2,Wagner Victoria A.3,Goulet Jennifer L.1,Tilley Stephen L.3,Koller Beverly H.3,Coffman Thomas M.1,Arendshorst William J.2

Affiliation:

1. Department of Medicine, Duke University and Durham Veterans Affairs Medical Center, Durham 27710; and

2. Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599-7545

3. Departments of Medicine and

Abstract

The kidney plays a central role in long-term regulation of arterial blood pressure and salt and water homeostasis. This is achieved in part by the local actions of paracrine and autacoid mediators such as the arachidonic acid-prostanoid system. The present study tested the role of specific PGE2 E-prostanoid (EP) receptors in the regulation of renal hemodynamics and vascular reactivity to PGE2. Specifically, we determined the extent to which the EP2 and EP3 receptor subtypes mediate the actions of PGE2 on renal vascular tone. Renal blood flow (RBF) was measured by ultrasonic flowmetry, whereas vasoactive agents were injected directly into the renal artery of male mice. Studies were performed on two independent mouse lines lacking either EP2or EP3 (−/−) receptors and the results were compared with wild-type controls (+/+). Our results do not support a unique role of the EP2 receptor in regulating overall renal hemodynamics. Baseline renal hemodynamics in EP2−/− mice [RBF EP2−/−: 5.3 ± 0.8 ml · min−1 · 100 g kidney wt−1; renal vascular resistance (RVR) 19.7 ± 3.6 mmHg · ml−1 · min · g kidney wt] did not differ statistically from control mice (RBF +/+: 4.0 ± 0.5 ml · min−1 · 100 g kidney wt−1; RVR +/+: 25.4 ± 4.9 mmHg · ml−1 · min · 100 g kidney wt−1). This was also the case for the peak RBF increase after local PGE2 (500 ng) injection into the renal artery (EP2−/−: 116 ± 4 vs. +/+: 112 ± 2% baseline RBF). In contrast, we found that the absence of EP3receptors in EP3−/− mice caused a significant increase (43%) in basal RBF (7.9 ± 0.8 ml · min−1 · g kidney wt−1, P < 0.05 vs. +/+) and a significant decrease (41%) in resting RVR (11.6 ± 1.4 mmHg · ml−1 · min · g kidney wt−1, P < 0.05 vs. +/+). Local administration of 500 ng of PGE2 into the renal artery caused more pronounced renal vasodilation in EP3−/− mice (128 ± 2% of basal RBF, P < 0.05 vs. +/+). We conclude that EP3 receptors mediate vasoconstriction in the kidney of male mice and its actions are tonically active in the basal state. Furthermore, EP3receptors are capable of buffering PGE2-mediated renal vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3