Branching exponent heterogeneity and wall shear stress distribution in vascular trees

Author:

Karau Kelly L.1,Krenz Gary S.2,Dawson Christopher A.134

Affiliation:

1. Department of Biomedical Engineering and

2. Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee 53201-1881;

3. Department of Physiology, Medical College of Wisconsin, Milwaukee 53226; and

4. Research Service, Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin 53295

Abstract

A bifurcating arterial system with Poiseuille flow can function at minimum cost and with uniform wall shear stress if the branching exponent ( z) = 3 [where z is defined by ( D 1) z = ( D 2) z + ( D 3) z ; D 1 is the parent vessel diameter and D 2 and D 3 are the two daughter vessel diameters at a bifurcation]. Because wall shear stress is a physiologically transducible force, shear stress-dependent control over vessel diameter would appear to provide a means for preserving this optimal structure through maintenance of uniform shear stress. A mean z of 3 has been considered confirmation of such a control mechanism. The objective of the present study was to evaluate the consequences of a heterogeneous distribution of z values about the mean with regard to this uniform shear stress hypothesis. Simulations were carried out on model structures otherwise conforming to the criteria consistent with uniform shear stress when z = 3 but with varying distributions of z. The result was that when there was significant heterogeneity in z approaching that found in a real arterial tree, the coefficient of variation in shear stress was comparable to the coefficient of variation in z and nearly independent of the mean value of z. A systematic increase in mean shear stress with decreasing vessel diameter was one component of the variation in shear stress even when the mean z = 3. The conclusion is that the influence of shear stress in determining vessel diameters is not, per se, manifested in a mean value of z. In a vascular tree having a heterogeneous distribution in zvalues, a particular mean value of z (e.g., z = 3) apparently has little bearing on the uniform shear stress hypothesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomechanical regulation of planar cell polarity in endothelial cells;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2022-12

2. Blood flow rate and wall shear stress in seven major cephalic arteries of humans;Journal of Anatomy;2019-11-11

3. Cellular and Extracellular Homeostasis in Fluctuating Mechanical Environments;Multi-scale Extracellular Matrix Mechanics and Mechanobiology;2019-07-13

4. Scaling Laws of Coronary Vasculature;Coronary Circulation;2019

5. Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function;Physiology;2016-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3