Noninvasive measurements of transmural myocardial metabolites using 3-D 31P NMR spectroscopy

Author:

Cho Yong K.1,Merkle Hellmut1,Zhang Jianyi1,Tsekos Nikolaos V.1,Bache Robert J.1,Uǧurbil Kâmil1

Affiliation:

1. Center for Magnetic Resonance Research and Departments of Medicine and Radiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455

Abstract

A completely noninvasive three-dimensional (3-D) static magnetic field magnitude spatially localized 31P spectroscopy technique has been developed and applied to study the in vivo canine myocardium at 9.4 T. The technique incorporates both Fourier series windows and selective Fourier transform methods utilizing all three orthogonal gradients for 3-D phase encoding. The number of data acquisitions for each phase-encoding step was weighted according to the Fourier coefficients to define cylindrical voxels. Spatially localized 31P spectra can be generated for voxels of desired location within the field of view as a postprocessing step. The quality of localization was first demonstrated by using a three-compartment phantom. The technique was then applied to in vivo canine models and yielded 31P cardiac spectra with an excellent signal-to-noise ratio. The in vivo validation experiments, using an implanted 2-phosphoenolpyruvate-containing marker, demonstrated that the technique is capable of measuring at least two transmural layers of left ventricular myocardium representing the subepicardium and subendocardium.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preclinical Cardiac In Vivo Spectroscopy;Protocols and Methodologies in Basic Science and Clinical Cardiac MRI;2017-10-25

2. MRS: a noninvasive window into cardiac metabolism;NMR in Biomedicine;2015-05-25

3. The Use of Magnetic Resonance Methods in Translational Cardiovascular Research;Journal of Cardiovascular Translational Research;2009-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3