Preconditioning limits mitochondrial Ca2+ during ischemia in rat hearts: role of KATP channels

Author:

Wang Lianguo1,Cherednichenko Gennady1,Hernandez Lisa1,Halow Jessica2,Camacho S. Albert2,Figueredo Vincent2,Schaefer Saul

Affiliation:

1. Division of Cardiovascular Medicine, University of California, Davis 95616; Department of Veteran Affairs, Northern California Health Care System, Mather 95655; and

2. Division of Cardiology, San Francisco General Hospital, San Francisco, California 94110

Abstract

Prolonged myocardial ischemia results in an increase in intracellular calcium concentration ([Ca2+]i), which is thought to play a critical role in ischemia-reperfusion injury. Ischemic preconditioning (PC) improves myocardial function during ischemia-reperfusion, a process that may involve opening mitochondrial ATP-sensitive potassium (KATP) channels. Because pharmacological limitation of mitochondrial calcium concentration ([Ca2+]m) overload during ischemia-reperfusion has been shown to improve myocardial function, we hypothesized that PC would reduce [Ca2+]m during ischemia-reperfusion and that this effect was mediated by opening mitochondrial KATP channels. Isolated rat hearts were subjected to 25 min of global ischemia and 30 min of reperfusion with or without PC in the presence of mitochondrial KATP channel opening (diazoxide, 100 μM) and blockade [5-hydroxydecanoic acid (5-HD), 100 μM]. Contracture during ischemia (end-diastolic pressure) and functional recovery on reperfusion (developed pressure) were assessed. Total [Ca2+]i and [Ca2+]m were measured using indo 1 fluorescence. Both PC and diazoxide limited the increase in end-diastolic pressure and resulted in greater functional recovery after 30 min of reperfusion, functional effects that were partially or completely abolished by 5-HD. PC and diazoxide also significantly limited the increase in [Ca2+]m during ischemia-reperfusion. In addition, PC lowered [Ca2+]i during reperfusion, whereas diazoxide paradoxically resulted in increased [Ca2+]iduring reperfusion. There was an inverse linear relationship between [Ca2+]m and developed pressure during reperfusion. PC limits the ischemia-induced increase in mitochondrial, but not total, [Ca2+]i, an effect mediated by opening mitochondrial KATP channels. These data suggest that the lowering of mitochondrial calcium overload is a mechanism of cardioprotection in PC.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3