Decreased NADH dehydrogenase and ubiquinol-cytochromec oxidoreductase in peripheral arterial disease

Author:

Brass Eric P.1,Hiatt William R.2,Gardner Andrew W.3,Hoppel Charles L.4

Affiliation:

1. Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California 90509;

2. Section of Vascular Medicine, Divisions of Geriatrics and Cardiology, University of Colorado Health Sciences Center, and The Colorado Prevention Center, Denver, Colorado 80203;

3. Division of Gerontology, University of Maryland, and Geriatric Research and Education Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201; and

4. Departments of Pharmacology and Medicine, Case Western Reserve University, and Geriatric Research and Education Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106

Abstract

Peripheral arterial disease (PAD) is associated with muscle metabolic changes that may contribute to the disability in these patients. However, the biochemical defects in PAD have not been identified. The present study was undertaken to test the hypothesis that PAD is associated with specific defects in skeletal muscle electron transport chain activity. Seventeen patients with PAD and nine age-matched controls underwent gastrocnemius muscle biopsies. There were no differences in the mitochondrial content per gram of skeletal muscle as assessed by citrate synthase activity between the PAD patients and the control subjects. Skeletal muscle NADH dehydrogenase activity was decreased by 27% compared with controls when expressed per unit of citrate synthase activity. Expression of enzyme activities normalized to cytochrome c-oxygen oxidoreductase activity confirmed a 26% decrease in NADH dehydrogenase activity and also demonstrated a 38% decrease in ubiquinol-cytochrome c oxidoreductase activity. Thus PAD is associated with specific changes in muscle mitochondrial electron transport chain activities characterized by relative decreases in NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase activities, which may contribute to the metabolic abnormalities and decreased exercise performance in these patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3