Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression

Author:

Tuttle Jay L.1,Nachreiner Ryan D.1,Bhuller Amardip S.1,Condict Kevin W.1,Connors Bret A.2,Herring B. Paul3,Dalsing Michael C.1,Unthank Joseph L.13

Affiliation:

1. Departments of Surgery,

2. Anatomy and Cell Biology, and

3. Cellular and Integrative Physiology, Indiana University Medical Center, Indianapolis, Indiana 46202

Abstract

The magnitude of shear stimulus has been shown to determine the level of growth factor expression in cell culture. However, little is known regarding what effect shear level has on specific arterial wall remodeling events in vivo. We have hypothesized that the rate of luminal diameter change and specific remodeling events within the arterial wall layers are dependent on shear level. Selective ligations were made to alter the number of microvascular perfusion units of mesenteric arteries within the same animal to ∼50%, 200%, and 400% of control. Arterial blood flow and wall shear rate were correlated with the degree of alteration in perfusion units. Luminal diameters were decreased in 50% arteries by day 2 and increased ∼17% and 33%, respectively, in 200% and 400% arteries at day 7. The rate of diameter change was greatest in 50% and 400% arteries. Wall areas (medial +37%; intimal +18% at day 2) and cell densities (intimal +26%; adventitial +44% at day 2) were altered only in the 400% arteries. A positive correlation existed by day 2between endothelial staining for endothelial nitric oxide synthase and shear level. The results demonstrate that shear level influences the rate of luminal expansion, specific remodeling events within each wall layer, and the degree of endothelial gene expression. A greater understanding of how shear level influences specific remodeling events within each wall layer should aid in the development of targeted therapies to manipulate the remodeling process in health and disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3