Complex AV nodal dynamics during ventricular-triggered atrial pacing in humans

Author:

Christini David J.1,Stein Kenneth M.1,Markowitz Steven M.1,Mittal Suneet1,Slotwiner David J.1,Iwai Sei1,Lerman Bruce B.1

Affiliation:

1. Division of Cardiology, Department of Medicine, Cornell University Medical College, New York, New York 10021

Abstract

In vitro experiments have shown that the complexity of atrioventricular nodal (AVN) conduction dynamics increases with heart rate. Although complex AVN dynamics (e.g., alternans) have been observed clinically, human AVN dynamics during rapid pacing have not been systematically investigated. We studied such dynamics during ventricular-triggered atrial pacing in 37 patients with normal AVN function (18 patients with dual AVN pathway physiology and 19 patients without). Alternans, which always resulted from single pathway conduction, occurred in 18 patients. In 16 patients (3 of whom also had alternans), quasisinusoidal AVN conduction oscillations occurred (mean frequency 0.02 Hz); such oscillations have not been previously reported. There were no significant differences in the dynamics for patients with or without dual AVN pathways. To illuminate the governing dynamic mechanism, a second atrial pacing trial was performed on 12 patients after autonomic blockade. Blockade facilitated alternans but inhibited oscillations. This study suggests that rapid AVN excitation in vivo can lead to autonomically mediated AVN conduction oscillations or single pathway alternans that are a function of inherent nonlinear dynamic AVN tissue properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3