Erythrocyte deformability is a nitric oxide-mediated factor in decreased capillary density during sepsis

Author:

Bateman Ryon M.1,Jagger Justin E.1,Sharpe Michael D.2,Ellsworth Mary L.3,Mehta Sanjay4,Ellis Christopher G.1

Affiliation:

1. Departments of Medical Biophysics,

2. Anaesthesia, and

3. Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, Missouri 63104

4. Respirology, University of Western Ontario, London, Ontario N6A 5B8, Canada; and

Abstract

Erythrocyte deformability has been recognized as a determinant of microvascular perfusion. Because nitric oxide (NO) is implicated in the modulation of red blood cell (RBC) deformability and NO levels increase during sepsis, we tested the hypothesis that a NO-mediated decrease in RBC deformability contributes to decreased functional capillary density (CD) in remote organs. With the use of a peritonitis model of sepsis in the rat [cecal ligation and perforation (CLP)] and aminoguanidine (AG) to prevent increases in NO, we measured CD in skeletal muscle (intravital microscopy), mean erythrocyte membrane deformability ([Formula: see text]; micropipette aspiration), systemic NO production [plasma nitrite/nitrate (NOx) chemiluminescence], and NO accumulation in RBC [NO bound to hemoglobin (HbNO) detected by electron paramagnetic resonance spectroscopy]. In untreated CLP animals relative to sham, NOx increased 254% ( P < 0.05), stopped flow capillaries increased 149% ( P < 0.05), and [Formula: see text] decreased 12.7% ( P < 0.05), with a subpopulation (5%) of RBC with deformabilities below the normal range. AG prevented increases in NOx, accumulation of HbNO, and decreases in both [Formula: see text]and functional CD. We found no evidence of leukocyte plugging postcapillary venules. Our findings suggest that decreased functional CD during sepsis resulted from a NO-mediated decrease in erythrocyte deformability.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3