Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin-angiotensin system

Author:

Leenen Frans H. H.1,White Roselyn1,Yuan Baoxue1

Affiliation:

1. Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada

Abstract

To assess the possible contribution of the circulatory and cardiac renin-angiotensin system (RAS) to the cardiac hypertrophy induced by a β-agonist, the present study evaluated the effects of isoproterenol, alone or combined with an angiotensin I-converting enzyme inhibitor or AT1 receptor blocker, on plasma and LV renin activity, ANG I, and ANG II, as well as left ventricular (LV) and right ventricular (RV) weight. Male Wistar rats received isoproterenol by osmotic minipump subcutaneously and quinapril or losartan once daily by gavage. Plasma and LV ANGs were measured by radioimmunoassay after separation by HPLC. Isoproterenol alone decreased blood pressure, more markedly when combined with losartan or quinapril. Isoproterenol significantly increased LV and RV weight and total collagen. Neither losartan nor quinapril inhibited the increases in LV or RV weight. Losartan prevented the increase in RV collagen but enhanced the increase in LV collagen. Isoproterenol increased plasma renin, ANG I, and ANG II three- to fourfold. Isoproterenol combined with losartan or quinapril, caused marked further increases except for a significant decrease in plasma ANG II with quinapril. Isoproterenol alone did not increase LV ANG II and, combined with losartan or quinapril, actually decreased LV ANG II. These results indicate that isoproterenol-induced cardiac hypertrophy is associated with clear increases in plasma ANG II, but not in LV ANG II. Both losartan and quinapril lower LV ANG II below control levels, but do not prevent the isoproterenol-induced cardiac hypertrophy. These findings do not support a role for the circulatory or cardiac RAS in the cardiac trophic responses to β-receptor stimulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3