Affiliation:
1. Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298
Abstract
This study investigated the role of the Na+/Ca2+ exchanger (NCX) in regulating cytosolic intracellular Ca2+concentration ([Ca2+]i) during anoxia/reoxygenation in guinea pig ventricular myocytes. The hypothesis that the NCX is the predominant mechanism mediating [Ca2+]i overload in this model was tested through inhibition of NCX expression by an antisense oligonucleotide. Immunocytochemistry revealed that this antisense oligonucleotide, directed at the area around the start site of the guinea pig NCX1, specifically reduced NCX expression in cultured adult myocytes by 90 ± 4%. Antisense treatment inhibited evoked NCX activity by 94 ± 3% and decreased the rise in [Ca2+]i during anoxia/reoxygenation by 95 ± 3%. These data suggest that NCX is the predominant mechanism mediating Ca2+ overload during anoxia/reoxygenation in guinea-pig ventricular myocytes.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献