Three-dimensional endocardial impedance mapping: a new approach for myocardial infarction assessment

Author:

Wolf Tamir1,Gepstein Lior1,Hayam Gal1,Zaretzky Asaph1,Shofty Rona1,Kirshenbaum Dina1,Uretzky Gideon2,Oron Uri3,Ben-Haim Shlomo A.1

Affiliation:

1. Cardiovascular System Laboratory, Bruce Rappaport Faculty of Medicine, and

2. Department of Cardiothoracic Surgery, Carmel Medical Center, Technion-Israel Institute of Technology, Haifa 31096; and

3. Department of Zoology, Tel-Aviv University, Tel-Aviv, Israel 69978

Abstract

Precise identification of infarcted myocardial tissue is of importance in diagnostic and interventional cardiology. A three-dimensional, catheter-based endocardial electromechanical mapping technique was used to assess the ability of local endocardial impedance in delineating the exact location, size, and border of canine myocardial infarction. Electromechanical mapping of the left ventricle was performed in a control group ( n = 10) and 4 wk after left anterior descending coronary artery ligation ( n = 10). Impedance, bipolar electrogram amplitude, and endocardial local shortening (LS) were quantified. The infarcted area was compared with the corresponding regions in controls, revealing a significant reduction in impedance values [infarcted vs. controls: 168.8 ± 11.7 and 240.7 ± 22.3 Ω, respectively (means ± SE), P < 0.05] bipolar electrogram amplitude (1.8 ± 0.2 mV, 4.4 ± 0.7 mV, P < 0.05), and LS (−2.36 ± 1.6%, 11.9 ± 0.9%, P < 0.05). The accuracy of the impedance maps in delineating the location and extent of the infarcted region was demonstrated by the high correlation with the infarct area (Pearson's correlation coefficient = 0.942) and the accurate identification of the infarct borders in pathology. By accurately defining myocardial infarction and its borders, endocardial impedance mapping may become a clinically useful tool in differentiating healthy from necrotic myocardial tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3