Oxidative stress contributes to vascular endothelial dysfunction in heart failure

Author:

Indik Julia H.1,Goldman Steven1,Gaballa Mohamed A.1

Affiliation:

1. Department of Internal Medicine, Southern Arizona Veterans Administration Health Care System and Sarver Heart Center, University of Arizona, Tucson, Arizona 85723

Abstract

Congestive heart failure (HF) is characterized by inadequate nitric oxide (NO) production in the vasculature. Because NO is degraded by oxygen radicals, we hypothesized that NO is degraded faster in HF from inadequate peripheral arterial antioxidant reserves. HF was induced in male Sprague-Dawley rats by left coronary artery ligation. Vascular endothelial function was evaluated by measuring the NO-mediated vasorelaxation response to acetylcholine (ACh; 10−9–10−4M) in excised aortas. This was repeated with the free radical generator pyrogallol (20 μM) and again with pyrogallol and superoxide dismutase (SOD; 60 U/ml). Aortic and myocardial SOD activity was also determined. ACh-induced vasorelaxation was reduced in HF ( n = 9) compared with normal control rats ( n = 11; P < 0.001). Pyrogallol further reduced vasorelaxation in HF: 74 ± 11% at 10−4M ACh versus 58 ± 10% in normal control rats ( P < 0.004). There was a trend ( P = 0.06) toward reduced SOD activity in HF aortas. In conclusion, altered NO-dependent vasorelaxation in HF is in part due to excessive degradation of NO and is likely related to reduced vascular SOD activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3