Renal denervation improves sodium excretion in rats with chronic heart failure: effects on expression of renal ENaC and AQP2

Author:

Zheng Hong1,Liu Xuefei1,Katsurada Kenichi2,Patel Kaushik P.2

Affiliation:

1. Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota

2. Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska

Abstract

Previously we have shown that increased expression of renal epithelial sodium channels (ENaC) may contribute to the renal sodium and water retention observed during chronic heart failure (CHF). The goal of this study was to examine whether renal denervation (RDN) changed the expressions of renal sodium transporters ENaC, sodium-hydrogen exchanger-3 proteins (NHE3), and water channel aquaporin 2 (AQP2) in rats with CHF. CHF was produced by left coronary artery ligation in rats. Four weeks after ligation surgery, surgical bilateral RDN was performed. The expression of ENaC, NHE3, and AQP2 in both renal cortex and medulla were measured. As a functional test for ENaC activation, diuretic and natriuretic responses to ENaC inhibitor benzamil were monitored in four groups of rats (Sham, Sham+RDN, CHF, CHF+RDN). Western blot analysis indicated that RDN (1 wk later) significantly reduced protein levels of α-ENaC, β-ENaC, γ-ENaC, and AQP2 in the renal cortex of CHF rats. RDN had no significant effects on the protein expression of kidney NHE3 in both Sham and CHF rats. Immunofluorescence studies of kidney sections confirmed the reduced signaling of ENaC and AQP2 in the CHF+RDN rats compared with the CHF rats. There were increases in diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. RDN reduced the diuretic and natriuretic responses to benzamil in CHF rats. These findings suggest a critical role for renal nerves in the enhanced expression of ENaC and AQP2 and subsequent pathophysiology of renal sodium and water retention associated with CHF. NEW & NOTEWORTHY This is the first study to show in a comprehensive way that renal denervation initiated after a period of chronic heart failure reduces the expression of epithelial sodium channels and aquaporin 2 leading to reduced epithelial sodium channel function and sodium retention.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3