Aquaporin-1 shifts the critical transmural pressure to compress the aortic intima and change transmural flow: theory and implications

Author:

Joshi Shripad1,Jan Kung-Ming2,Rumschitzki David S.12

Affiliation:

1. Department of Chemical Engineering, City College of the City University of New York, New York; and

2. Department of Medicine, College of Physicians and Surgeons, Columbia University, New York

Abstract

Transmural-pressure (ΔP)-driven plasma advection carries macromolecules into the vessel wall, the earliest prelesion atherosclerotic event. The wall's hydraulic conductivity, LP, the water flux-to-ΔP ratio, is high at low pressures, rapidly decreases, and remains flat to high pressures (Baldwin AL, Wilson LM. Am J Physiol Heart Circ Physiol 264: H26–H32, 1993; Nguyen T, Toussaint, Xue JD, Raval Y, Cancel CB, Russell LM, Shou S, Sedes Y, Sun O, Yakobov Y, Tarbell JM, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 308: H1051–H1064, 2015; Tedgui A, Lever MJ. Am J Physiol Heart Circ Physiol. 247: H784–H791, 1984. Shou Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 291: H2758–H2771, 2006) due to pressure-induced subendothelial intima (SI) compression that causes endothelial cells to partially block internal elastic laminar fenestrae. Nguyen et al. showed that rat and bovine aortic endothelial cells express the membrane protein aquaporin-1 (AQP1) and transmural water transport is both transcellular and paracellular. They found that LP lowering by AQP1 blocking was perplexingly ΔP dependent. We hypothesize that AQP1 blocking lowers average SI pressure; therefore, a lower ΔP achieves the critical force/area on the endothelium to partially block fenestrae. To test this hypothesis, we improve the approximate model of Huang et al. (Huang Y, Rumschitzki D, Chien S, Weinbaum SS. Am J Physiol Heart Circ Physiol 272: H2023–H2039, 1997) and extend it by including transcellular AQP1 water flow. Results confirm the observation by Nguyen et al.: wall LP and water transport decrease with AQP1 disabling. The model predicts 1) low-pressure LP experiments correctly; 2) AQP1s contribute 30–40% to both the phenomenological endothelial + SI and intrinsic endothelial LP; 3) the force on the endothelium for partial SI decompression with functioning AQP1s at 60 mmHg equals that on the endothelium at ∼43 mmHg with inactive AQP1s; and 4) increasing endothelial AQP1 expression increases wall LP and shifts the ΔP regime where LP drops to significantly higher ΔP than in Huang et al. Thus AQP1 upregulation (elevated wall LP) might dilute and slow low-density lipoprotein binding to SI extracellular matrix, which may be beneficial for early atherogenesis.

Funder

NSF | BIO | Division of Integrative Organismal Systems

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

NSF | ENG | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3