Expression of an angiotensin-(1-7)-producing fusion protein in rats induced marked changes in regional vascular resistance

Author:

Botelho-Santos Giancarla A.,Sampaio Walkyria O.,Reudelhuber Timothy L.,Bader Michael,Campagnole-Santos Maria J.,Souza dos Santos Robson A.

Abstract

We have described a transgenic rat line that expresses an angiotensin-(1-7)-producing fusion protein, the TGR(A1-7)3292. In these rats, testis acts as an angiotensin-(1-7) biological pump, increasing its plasma concentration 2.5-fold. In this study, we performed hemodynamic measurements in TGR(A1-7)3292 and age-matched Hannover Sprague-Dawley (SD) control rats, using fluorescent microspheres. Urethane-anesthetized transgenic rats had similar levels of baseline blood pressure (99 ± 3 mmHg) as did SD rats (101 ± 3 mmHg). However, pronounced differences were observed in other hemodynamic measurements. TGR(A1-7)3292 rats presented a significant increase in stroke volume (0.29 ± 0.01 vs. 0.25 ± 0.01 ml in SD), increased cardiac index (24.6 ± 0.91 vs. 21.9 ± 0.65 ml·min−1·kg) and decreased total peripheral resistance (3.9 ± 0.13 vs. 4.5 ± 0.13 mmHg·ml−1·min·100 g). The increase in stroke volume in transgenic rats may be partially explained by the small decrease in heart rate (326 ± 7.0 vs. 359 ± 6.0 beats/min in SD). Strikingly, TGR(A1-7)3292 rats presented a substantial decrease in the vascular resistance in lung, spleen, kidney, adrenals, brain, testis and brown fat tissue with no significant differences in the left ventricle, mesentery, skin, gastrocnemius muscle and white fat tissue. These results corroborate and extend previous results observed after acute angiotensin-(1-7) infusion, showing that chronic increase in circulating angiotensin-(1-7) produces sustained and important changes in regional and systemic hemodynamics. Moreover, our data suggest a physiological role for angiotensin-(1-7) in the tonic control of regional blood flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3