Lateralization of expression of neural sympathetic activity to the vessels and effects of carotid baroreceptor stimulation

Author:

Diedrich André,Porta Alberto,Barbic Franca,Brychta Robert J.,Bonizzi Pietro,Diedrich Laura,Cerutti Sergio,Robertson David,Furlan Raffaello

Abstract

Human studies suggest that cardiovascular neural sympathetic control is predominantly modulated by the right cerebral hemisphere. It is unknown whether post-ganglionic sympathetic activity [muscle sympathetic nerve activity (MSNA)] shows any functional asymmetry. Eight right-handed volunteers (3 women and 5 men, 32 ± 2 yr of age) underwent ECG, beat-by-beat blood pressure, respiratory activity, and simultaneous right and left MSNA recordings during spontaneous and controlled breathing (CB, 15 breaths/min, 0.25 Hz). Dynamic carotid baroreceptor stimulation was obtained by 0.1-Hz sinusoidal suction, from 0 to −50 mmHg, randomly applied to the right, left, and combined right and left sides of the neck during CB. Laterality was assessed by changes in the MSNA burst rate (in bursts/min, and bursts/100 beats), strength [amplitude (A) and area (AA)], and the oscillatory component at 0.1 Hz during baroreceptor stimulation. Amplitude parameters were normalized by CB burst mean amplitude and area of the same side. At rest, the right and left MSNA burst rate and total MSNA activity were similar. Conversely, the right MSNA normalized burst AN (1.36 ± 0.18) and AAN (1.31 ± 0.16) were larger than the left MSNA AN (1.04 ± 0.09) and AAN (1.02 ± 0.08). Unilateral and bilateral carotid baroreflex stimulation abolished the right prevalence of AN and AAN. In conclusion, the right lateralization of sympathetic activity to the vessels is indicated by normalized burst strength parameters of bilateral MSNA recordings at rest during spontaneous breathing. Carotid baroreceptor stimulation disrupted such expression of MSNA lateralization possibly by disturbing the synchronizing action of right cerebral hemisphere.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3