Chronic resveratrol treatment restores vascular responsiveness of cerebral arterioles in type 1 diabetic rats

Author:

Arrick Denise M.1,Sun Hong2,Patel Kaushik P.2,Mayhan William G.1

Affiliation:

1. Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, School of Medicine in Shreveport, Shreveport, Louisiana; and

2. Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska

Abstract

Decreased dilation of cerebral arterioles via an increase in oxidative stress may be a contributing factor in the pathogenesis of diabetes-induced complications leading to cognitive dysfunction and/or stroke. Our goal was to determine whether resveratrol, a polyphenolic compound present in red wine, has a protective effect on cerebral arterioles during type 1 diabetes (T1D). We measured the responses of cerebral arterioles in untreated and resveratrol-treated (10 mg·kg−1·day−1) nondiabetic and diabetic rats to endothelial (eNOS) and neuronal (nNOS) nitric oxide synthase (NOS)-dependent agonists and to a NOS-independent agonist. In addition, we harvested brain tissue from nondiabetic and diabetic rats to measure levels of superoxide under basal conditions. Furthermore, we used Western blot analysis to determine the protein expression of eNOS, nNOS, SOD-1, and SOD-2 in cerebral arterioles and/or brain tissue from untreated and resveratrol-treated nondiabetic and diabetic rats. We found that T1D impaired eNOS- and nNOS-dependent reactivity of cerebral arterioles but did not alter NOS-independent vasodilation. While resveratrol did not alter responses in nondiabetic rats, resveratrol prevented T1D-induced impairment in eNOS- and nNOS-dependent vasodilation. In addition, superoxide levels were higher in brain tissue from diabetic rats and resveratrol reversed this increase. Furthermore, eNOS and nNOS protein were increased in diabetic rats and resveratrol produced a further increased eNOS and nNOS proteins. SOD-1 and SOD-2 proteins were not altered by T1D, but resveratrol treatment produced a decrease in SOD-2 protein. Our findings suggest that resveratrol restores vascular function and oxidative stress in T1D. We suggest that our findings may implicate an important therapeutic potential for resveratrol in treating T1D-induced cerebrovascular dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3