Minimal effect of collateral flow on coronary microvascular resistance in the presence of intermediate and noncritical coronary stenoses

Author:

Verhoeff Bart-Jan1,van de Hoef Tim P.12,Spaan Jos A. E.2,Piek Jan J.1,Siebes Maria2

Affiliation:

1. Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and

2. Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Depending on stenosis severity, collateral flow can be a confounding factor in the determination of coronary hyperemic microvascular resistance (HMR). Under certain assumptions, the calculation of HMR can be corrected for collateral flow by incorporating the wedge pressure (Pw) in the calculation. However, although Pw > 25 mmHg is indicative of collateral flow, Pw does in part also reflect myocardial wall stress neglected in the assumptions. Therefore, the aim of this study was to establish whether adjusting HMR by Pw is pertinent for a diagnostically relevant range of stenosis severities as expressed by fractional flow reserve (FFR). Accordingly, intracoronary pressure and Doppler flow velocity were measured a total of 95 times in 29 patients distal to a coronary stenosis before and after stepwise percutaneous coronary intervention. HMR was calculated without (HMR) and with Pw-based adjustment for collateral flow (HMRC). FFR ranged from 0.3 to 1. HMR varied between 1 and 5 and HMRC between 0.5 and 4.2 mmHg·cm−1·s. HMR was about 37% higher than HMRC for stenoses with FFR < 0.6, but for FFR > 0.8, the relative difference was reduced to 4.4 ± 3.4%. In the diagnostically relevant range of FFR between 0.6 and 0.8, this difference was 16.5 ± 10.4%. In conclusion, Pw-based adjustment likely overestimates the effect of potential collateral flow and is not needed for the assessment of coronary HMR in the presence of a flow-limiting stenosis characterized by FFR between 0.6 and 0.8 or for nonsignificant lesions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3