Uncoupling the mitochondria facilitates alternans formation in the isolated rabbit heart

Author:

Smith Rebecca M.1,Visweswaran Ramjay1,Talkachova Iryna1,Wothe Jillian K.1,Tolkacheva Elena G.1

Affiliation:

1. Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota

Abstract

Alternans of action potential duration (APD) and intracellular calcium ([Ca2+]i) transients in the whole heart are thought to be markers of increased propensity to ventricular fibrillation during ischemia-reperfusion injuries. During ischemia, ATP production is affected and the mitochondria become uncoupled, which may affect alternans formation in the heart. The aim of our study was to investigate the role of mitochondria on the formation of APD and [Ca2+]i alternans in the isolated rabbit heart. We performed dual voltage and [Ca2+]i optical mapping of isolated rabbit hearts under control conditions, global no-flow ischemia ( n = 6), and after treatment with 50 nM of the mitochondrial uncoupler FCCP ( n = 6). We investigated the formation of alternans of APD, [Ca2+]i amplitude (CaA), and [Ca2+]i duration (CaD) under different rates of pacing. We found that treatment with FCCP leads to the early occurrence of APD, CaD, and CaA alternans; an increase of intraventricular APD but not CaD heterogeneity; and significant reduction in conduction velocity compared with that of control. Furthermore, we demonstrated that FCCP and global ischemia have similar effects on the prolongation of [Ca2+]i transients, whereas ischemia induces a significantly larger reduction of APD compared with that in FCCP treatment. In conclusion, our results demonstrate that uncoupling of mitochondria leads to an earlier occurrence of alternans in the heart. Thus, in conditions of mitochondrial stress, as seen during myocardial ischemia, uncoupled mitochondria may be responsible for the formation of both APD and [Ca2+]i alternans in the heart, which in turn creates a substrate for ventricular arrhythmias.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3