Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure

Author:

Zhang Jin1,Ren Chongyu1,Chen Ling2,Navedo Manuel F.3,Antos Laura K.1,Kinsey Stephen P.1,Iwamoto Takahiro4,Philipson Kenneth D.5,Kotlikoff Michael I.6,Santana Luis F.3,Wier W. Gil1,Matteson Donald R.1,Blaustein Mordecai P.12

Affiliation:

1. Departments of 1Physiology and

2. Medicine, University of Maryland School of Medicine, Baltimore, Maryland;

3. Department of Physiology and Biophysics, University of Washington, Seattle, Washington;

4. Department of Pharmacology, Fukuoka University School of Medicine, Fukuoka, Japan;

5. Department of Physiology, David Geffen School of Medicine at the University of California, Los Angeles, California; and

6. Department of Biomedical Sciences, Cornell University Veterinary College, Ithaca, New York

Abstract

Mice with smooth muscle (SM)-specific knockout of Na+/Ca2+ exchanger type-1 (NCX1SM−/−) and the NCX inhibitor, SEA0400, were used to study the physiological role of NCX1 in mouse mesenteric arteries. NCX1 protein expression was greatly reduced in arteries from NCX1SM−/− mice generated with Cre recombinase. Mean blood pressure (BP) was 6–10 mmHg lower in NCX1SM−/− mice than in wild-type (WT) controls. Vasoconstriction was studied in isolated, pressurized mesenteric small arteries from WT and NCX1SM−/− mice and in heterozygotes with a global null mutation (NCX1Fx/−). Reduced NCX1 activity was manifested by a marked attenuation of responses to low extracellular Na+ concentration, nanomolar ouabain, and SEA0400. Myogenic tone (MT, 70 mmHg) was reduced by ∼15% in NCX1SM−/− arteries and, to a similar extent, by SEA0400 in WT arteries. MT was normal in arteries from NCX1Fx/− mice, which had normal BP. Vasoconstrictions to phenylephrine and elevated extracellular K+ concentration were significantly reduced in NCX1SM−/− arteries. Because a high extracellular K+ concentration-induced vasoconstriction involves the activation of L-type voltage-gated Ca2+ channels (LVGCs), we measured LVGC-mediated currents and Ca2+ sparklets in isolated mesenteric artery myocytes. Both the currents and the sparklets were significantly reduced in NCX1SM−/− (vs. WT or NCX1Fx/−) myocytes, but the voltage-dependent inactivation of LVGCs was not augmented. An acute application of SEA0400 in WT myocytes had no effect on LVGC current. The LVGC agonist, Bay K 8644, eliminated the differences in LVGC currents and Ca2+ sparklets between NCX1SM−/− and control myocytes, suggesting that LVGC expression was normal in NCX1SM−/− myocytes. Bay K 8644 did not, however, eliminate the difference in myogenic constriction between WT and NCX1SM−/− arteries. We conclude that, under physiological conditions, NCX1-mediated Ca2+ entry contributes significantly to the maintenance of MT. In NCX1SM−/− mouse artery myocytes, the reduced Ca2+ entry via NCX1 may lower cytosolic Ca2+ concentration and thereby reduce MT and BP. The reduced LVGC activity may be the consequence of a low cytosolic Ca2+ concentration.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3