Roles of L-type Ca2+ and delayed-rectifier K+ currents in sinoatrial node pacemaking: insights from stability and bifurcation analyses of a mathematical model

Author:

Kurata Yasutaka,Hisatome Ichiro,Imanishi Sunao,Shibamoto Toshishige

Abstract

To elucidate the dynamical mechanisms of the sinoatrial (SA) node pacemaker activity, we investigated the roles of L-type Ca2+ ( ICa,L) and delayed-rectifier K+ ( IKr) currents in pacemaking by stability and bifurcation analyses of our rabbit SA node model (Kurata Y, Hisatome I, Imanishi S, and Shibamoto T. Am J Physiol Heart Circ Physiol 283: H2074–H2101, 2002). Equilibrium points (EPs), periodic orbits, stability of EPs, and Hopf bifurcation points were calculated as functions of conductance or gating time constants of the currents for constructing bifurcation diagrams. Structural stability (robustness) of the system was also evaluated by computing stability and dynamics during applications of constant bias currents ( Ibias). Blocking ICa,L or IKr caused stabilization of an EP and cessation of pacemaking via a Hopf bifurcation. The unstable zero-current potential region determined with Ibias applications, where spontaneous oscillations appear, shrunk and finally disappeared as ICa,L diminished, but shrunk little when IKr was eliminated. The reduced system, including no time-dependent current except ICa,L, exhibited pacemaker activity. These results suggest that ICa,L is responsible for EP instability and pacemaker generation, whereas IKr is not necessarily required for constructing a pacemaker cell system. We further explored the effects of various K+ currents with different kinetics on stability and dynamics of the model cell. The original IKr of delayed activation and inward rectification appeared to be most favorable for generating large-amplitude oscillations with stable frequency, suggesting that IKr acts as an oscillation amplifier and frequency stabilizer. IKr may also play an important role in preventing bifurcation to quiescence of the system.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3