Contribution of adenosine to arteriolar autoregulation in striated muscle

Author:

Morff R. J.,Granger H. J.

Abstract

The contribution of adenosine to blood flow autoregulation in striated muscle was evaluated by direct in vivo visualization of arterioles in the rat cremaster muscle. Male Sprague-Dawley rats were anesthetized with pentobarbital sodium, and the cremaster muscle was surgically exposed and maintained in a controlled tissue bath environment with pH 7.40, CO2 tension (PCO2) congruent to 40 mmHg, and O2 tension (PO2) at either a high (congruent to 70 mmHg) or a low (congruent to 10 mmHg) value. Local adenosine activity was blocked in some animals by the addition of theophylline (3 X 10(-5) M) to the bath medium. Individual second (2A)- and third (3A)-order arterioles were observed via closed-circuit television microscopy, and blood flow in each arteriole was calculated from simultaneous measurements of arteriolar diameter and red blood cell velocity. Perfusion pressure to the animal's hindquarters was altered by varying the degree of occlusion of the sacral aorta; arteriolar diameter, velocity, and blood flow responses were plotted as a function of the varying pressure. Both 2A and 3A arterioles exhibited vasodilation and substantial superregulation of blood flow (increased blood flow with decreased perfusion pressure) when bath PO2 was low and adenosine activity was not blocked. Addition of theophylline to the cremaster bath medium significantly reduced the dilation and abolished superregulation, although substantial autoregulation remained. When bath PO2 was high, the degree of arteriolar dilation and autoregulation was reduced compared with the low bath PO2 responses, and blocking adenosine activity had no effect on the responses. These results support the concept that changes in local adenosine levels are involved in the autoregulatory responses observed in the rat cremaster muscle and that the magnitude of adenosine's contribution is directly related to the degree of tissue hypoxia. However, blocking adenosine activity did not totally abolish autoregulation, suggesting that other metabolic and/or myogenic factors may also be contributing to blood flow regulation in this tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3