Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis

Author:

Rouslin W.

Abstract

Ischemic myocardium was produced by occluding the left circumflex coronary artery in anesthetized dogs. Autolyzed myocardium was produced by incubating transmural samples of canine left ventricle at 37 degrees C. Tissue pH was recorded continuously in each model using a microcombination pH electrode impaled into the midmyocardium. The activities of the five mitochondrial inner membrane enzyme complexes of electron transport and coupled oxidative phosphorylation were assayed as a function of time of ischemia or autolysis. While the activities of complex II (succinate-CoQ reductase) and IV (cytochrome c oxidase) were completely stable, that of complex I (NADH-CoQ reductase) decreased markedly, but largely only after 20 min of ischemia or autolysis. At 20 min and beyond, the decrease in the activity of complex I paralleled closely the decrease in whole mitochondrial oxygen uptake with NAD-linked substrates in both models. The activity of complex III (CoQH2-c reductase) decreased at a more gradual rate during ischemia or autolysis, and its rate of decrease paralleled that of succinate-supported oxygen uptake. The activity of complex V (oligomycin-sensitive ATPase) decreased most rapidly (by 40% in only 5 min of autolysis) but nearly leveled off beyond 20 min in the two models. A strikingly similar pattern of differential enzyme lability was observed in isolated control mitochondria incubated at lowered pH values. The results demonstrate 1) differential enzyme lability within the mitochondrial inner membrane, 2) a connection between severity of acidosis and the degree of enzyme activity loss, and 3) the usefulness of simple tissue autolysis as an analogue of in situ myocardial ischemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3