Author:
Nishikawa Yasuhiro,Stepp David W.,Merkus Daphne,Jones Deron,Chilian William M.
Abstract
The heart constitutively expresses heme oxygenase (HO)-2, which catabolizes heme-containing proteins to produce biliverdin and carbon monoxide (CO). The heart also contains many possible substrates for HO-2 such as heme groups of myoglobin and cytochrome P-450s, which potentially could be metabolized into CO. As a result of observations that CO activates guanylyl cyclase and induces vascular relaxation and that HO appears to confer protection from ischemic injury, we hypothesized that the HO-CO pathway is involved in ischemic vasodilation in the coronary microcirculation. Responses of epicardial coronary arterioles to ischemia (perfusion pressure ∼40 mmHg; flow velocity decreased by ∼50%; d L/d t reduced by ∼60%) were measured using stroboscopic fluorescence microangiography in 34 open-chest anesthetized dogs. Ischemia caused vasodilation of coronary arterioles by 36 ± 6%. Administration of NG-monomethyl-l-arginine (l-NMMA, 3 μmol·kg−1·min−1 intracoronary), indomethacin (10 mg/kg iv), and K+ (60 mM, epicardial suffusion) to prevent the actions of nitric oxide, prostaglandins, and hyperpolarizing factors, respectively, partially inhibited dilation during ischemia (36 ± 6 vs. 15 ± 4%; P < 0.05). The residual vasodilation during ischemia after antagonist administration was inhibited by tin mesoporphyrin IX (SnMP, 10 mg/kg iv), which is an inhibitor of HO (15 ± 4 vs. 7 ± 2%; P < 0.05 vs. before SnMP). The guanylyl cyclase inhibitor 1 H-[1,2,4]oxadiazole[4,3- a]quinoxalin-1-one (10−5 M, epicardial suffusion) also inhibited vasodilation during ischemia in the presence of l-NMMA with indomethacin and KCl. Moreover, administration of heme-l-arginate, which is a substrate for HO, produced dilation after ischemia but not after control conditions. We conclude that during myocardial ischemia, HO-2 activation can produce cGMP-mediated vasodilation presumably via the production of CO. This vasodilatory pathway appears to play a backup role and is activated only when other mechanisms of vasodilation during ischemia are exhausted.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献