MMP-2 is localized to the mitochondria-associated membrane of the heart

Author:

Hughes Bryan G.123,Fan Xiaohu123,Cho Woo Jung4,Schulz Richard123

Affiliation:

1. Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada;

2. Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada;

3. Mazankowski Alberta Heart Institute/Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada

4. Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; and

Abstract

Matrix metalloproteinase-2 (MMP-2) has been extensively studied in the context of extracellular matrix remodeling but is also localized within cells and can be activated by prooxidants to proteolyze specific intercellular targets. Although there are reports of MMP-2 in mitochondria, a critical source of cellular oxidative stress, these studies did not take into account the presence within their preparations of the mitochondria-associated membrane (MAM), a subdomain of the endoplasmic reticulum (ER). We hypothesized that MMP-2 is situated in the MAM and therefore investigated its subcellular distribution between mitochondria and the MAM. Immunogold electron microscopy revealed MMP-2 localized in mitochondria of heart sections from mice. In contrast, immunofluorescence analysis of an MMP-2:HaloTag fusion protein expressed in HL-1 cardiomyocytes showed an ER-like distribution, with greater colocalization with an ER marker (protein disulfide isomerase) relative to the mitochondrial marker, MitoTracker red. Although MMP-2 protein and enzymatic activity were present in crude mitochondrial fractions, once these were separated into purified mitochondria and MAM, MMP-2 was principally associated with the latter. Thus, although mitochondria may contain minimal levels of MMP-2, the majority of MMP-2 previously identified as “mitochondrial” is in fact associated with the MAM. We also found that calreticulin, an ER- and MAM-resident Ca2+ handling protein and chaperone, could be proteolyzed by MMP-2 in vitro. MAM-localized MMP-2 could therefore potentially impact mitochondrial function by affecting ER-mitochondrial Ca2+ signaling via its proteolysis of calreticulin.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3