An angiogenesis model for investigating multicellular interactions across intact microvascular networks

Author:

Stapor Peter C.1,Azimi Mohammad S.1,Ahsan Tabassum1,Murfee Walter L.1

Affiliation:

1. Department of Biomedical Engineering, Tulane University, Lindy Boggs Center, New Orleans, Louisiana

Abstract

Developing therapies aimed at manipulating microvascular remodeling requires a better understanding of angiogenesis and how angiogenesis relates to other network remodeling processes, such as lymphangiogenesis and neurogenesis. The objective of this study was to develop an angiogenesis model that enables probing of multicellular and multisystem interactions at the molecular level across an intact adult microvascular network. Adult male Wistar rat mesenteric windows were aseptically harvested and cultured in serum-free minimum essential media. Viability/cytotoxicity analysis revealed that cells remain alive for at least 7 days. Immunohistochemical labeling at 3 days for platelet endothelial cell adhesion molecule (PECAM), neuron-glial antigen 2 (NG2), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), and class III β-tubulin identified endothelial cells, pericytes, lymphatics, and nerves, respectively. Media supplemented with bFGF or VEGF induced an increase in endothelial cell sprouting off existing vessels. Endothelial cell sprouting in both growth factor groups was inhibited by targeting pericytes with NG2 functional blocking antibody. VEGF caused an increase in the number of lymphatic/blood endothelial cell connections compared with media alone or bFGF groups. Finally, the comparison of the same network before and after angiogenesis stimulated by the supplement of media with 20% serum identified the ability of disconnected endothelial segments to reconnect to nearby vessels. The results establish a novel in situ angiogenesis model for investigating the location of capillary sprouting within an intact network, the role of pericytes, lymphatic/blood endothelial cell interactions, and the fate of specific endothelial cell segments. The rat mesentery culture system offers a unique tool for understanding the complex dynamics associated with angiogenesis in an intact adult tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3