Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion

Author:

Kubli Dieter A.,Quinsay Melissa N.,Huang Chengqun,Lee Youngil,Gustafsson Åsa B.

Abstract

Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) is a member of the Bcl-2 homology domain 3-only subfamily of proapoptotic Bcl-2 proteins and is associated with cell death in the myocardium. In this study, we investigated the potential mechanism(s) by which Bnip3 activity is regulated. We found that Bnip3 forms a DTT-sensitive homodimer that increased after myocardial ischemia-reperfusion (I/R). The presence of the antioxidant N-acetylcysteine reduced I/R-induced homodimerization of Bnip3. Overexpression of Bnip3 in cells revealed that most of exogenous Bnip3 exists as a DTT-sensitive homodimer that correlated with increased cell death. In contrast, endogenous Bnip3 existed mainly as a monomer under normal conditions in the heart. Screening of the Bnip3 protein sequence revealed a single conserved cysteine residue at position 64. Mutation of this cysteine to alanine (Bnip3C64A) or deletion of the NH2-terminus (amino acids 1-64) resulted in reduced cell death activity of Bnip3. Moreover, mutation of a histidine residue in the COOH-terminal transmembrane domain to alanine (Bnip3H173A) almost completely inhibited the cell death activity of Bnip3. Bnip3C64A had a reduced ability to interact with Bnip3, whereas Bnip3H173A was completely unable to interact with Bnip3, suggesting that homodimerization is important for Bnip3 function. A consequence of I/R is the production of reactive oxygen species and oxidation of proteins, which promotes the formation of disulfide bonds between proteins. Thus, these experiments suggest that Bnip3 functions as a redox sensor where increased oxidative stress induces homodimerization and activation of Bnip3 via cooperation of the NH2-terminal cysteine residue and the COOH-terminal transmembrane domain.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3